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Calculations have been made on the lowest state of H 2 in the region 4--6 a.u. with a view to 
elucidating some of the problems arising in the perturbation theory of intermolecular forces in the 
region of small orbital overlap. The conclusions are that a small basis set of non-orthogonal functions, 
which in a variation calculation gives reasonably good total energies, can give a poor approximation 
to the second-order perturbation energies. 

Variational calculations using the separate basis functions appropriate to induction, dispersion 
and charge-transfer energies show that these energies may be reasonably added together to reproduce 
the variational calculations from the total basis set. 

Rechnungen ffir den Grundzustand von H 2 ftir Abst~inde zwischen 4 und 6 a. E. wurden zur 
Klgrung einiger Fragen, die bei St6rungsrechnungen fiir intermolekulare Kr~ifte auftreten, durch- 
gefiihrt. Dabei ergab sich, dab eine kleine Basis von nicht orthogonalen Funktionen, die bei Varia- 
tionsrechnungen durchaus gute Resultate liefern, bei St6rungsrechnungen zweiter Ordnung versagen 
kann. Dagegen zeigen Variationsrechnungen mit getrennten Basisfunktionen fiir Induktions-, Di- 
spersions- und Charge-transfer-Energien, dab solche Teilbetrgge sich addieren lassen und dann die 
Ergebnisse yon entsprechenden Rechnungen mit einem vollst~indigen Basissatz reproduzieren. 

L'6tat fondamental de H 2 a 6t6 4tudi6 dans le domaine de 4.6 u.a., afin d'~claircir certains probl6mes 
apparaissant dans la th6orie par perturbation des forces intermol6culaires dans la r6gion de recouvre- 
ment orbital faible. La conclusion signifie qu'une base peu 6tendue de fonctions non orthogonales, 
qui donne des 6nergies totales raisonnables par calcul variationnel, peut donner un mauvais r6sultat 
pour l'6nergie de perturbation au second-ordre. Des calculs variationnels ntilisant les bases respective- 
ment appropri6es pour les 6nergies d'induction, de dispersion, et de transfert de charge, montrent 
que ces 6nergies peuvent atre raisonnablement ajout6es pour reproduire les calculs variationnels 
utilisant la base totale. 

Introduction 

T h e r e  h a v e  b e e n  m a n y  a t t e m p t s  r e c e n t l y  t o  e x t e n d  t h e  l o n g  r a n g e  t h e o r y  o f  

i n t e r m o l e c u l a r  fo rces  t o  t h e  i n t e r m e d i a t e  r a n g e ,  w h e r e  o v e r l a p  b e t w e e n  t h e  t w o  

s y s t e m s  b e c o m e s  n o n - n e g l i g i b l e  [ 1 - 7  I .  S e v e r a l  d i f f e r en t  p e r t u r b a t i o n  m e t h o d s  

h a v e  b e e n  p r o p o s e d ,  b u t  l i t t l e  n u m e r i c a l  w o r k  h a s  b e e n  d o n e  e i t h e r  to  c o m p a r e  

t h e  r e l a t i v e  m e r i t s  o f  t h e  d i f f e r e n t  t h e o r i e s  o r  to  assess  t he  r e l a t i v e  i m p o r t a n c e  

o f  t h e  d i f f e ren t  t e r m s  in  t h e  p e r t u r b a t i o n  e x p a n s i o n s  1. 

1 The following recent work is relevant to the problem. 
1. McQuarrie and Hirschfelder [16] and van der Avoird [17] have applied different perturbation 

techniques to H~ and in both cases obtained satisfactory results. However, H2 + being a one-electron 
system has rather different features from the usual interatomic or intermolecular interaction. 

2. Epstein and Johnson [18] have compared the different perturbation techmques for a model 
two-spin system in a magnetic field and find considerable differences between them. The model has 
however httle relationship to the problem of intermolecular forces for which the perturbation theories 
were derived. 

3. Certain, Hirsehfelder, Kolos and Wolniewicz have papers on H 2 in press in which they compare 
the different perturbation theories for the range 4--8 a.u. Our calculations are less complete than 
theirs (in particular we did not have the necessary eomputor facilities to go into the difficult region 
beyond 6 a.u.) but in part complementary. 
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Of special interest in the latter category is the significance of charge-transfer 
energies in such perturbation expansions. It has frequently been assumed that 
charge-transfer energies may be added to other contributions to give a meaningful 
total energy [8]. It is, however, easily shown that inclusion of charge-transfer 
states in an expansion consisting of locally-excited states leads to an overcomplete 
set and hence in a perturbation method there is the danger of including certain 
contributions to the energy twice. It would obviously be useful if at least some 
guide could be obtained to indicate when and how charge-transfer states might 
be included, but no rigorous rules are as yet available. 

We here report some calculations which we hope will elucidate some of the 
above problems. The system studied is two hydrogen atoms with parallel spins 
separated by 4-6  a.u. Both perturbation and variational calculations have been 
carried out using a basis set of states derived from the ls, 2s and 2po- atomic 
orbitals of both atoms. For  the 2s and 2pa orbitals we have used (a) hydrogenic 
functions, which are eigenfunctions of the atomic Hamiltonian and (b) L6wdin- 
Shull orbitals, which are not [-9], but which have the well known desirable property 
of completeness without inclusion of unbound functions. As the basis set is rather 
small we do not expect to obtain accurate total energies but we think our results 
will allow some general conclusion to be reached. 

Calculations 

The states arising from allowing excitations to 2s and 2pa on each centre can 
be classified as follows: 

G : the ground state (ls,, lsb) 
I : four singly-excited states (e.g. ls, 2sb) 
D : four doubly-excited states (e.g. 2s~ 2p~b) 
C : four charge-transfer states (e.g. lsa 2p~,) 
C': two excited charge-transfer states (e.g. 2s, 2p~,). 
In the London theory of long-range interactions the states I give rise to 

induction energies and the states D to dispersion energies. C and C' might be 
included in a perturbation theory of charge-transfer interactions although C' 
are not generally considered to have any significant effect on ground-state energies. 

In the variational calculations we have solved (_H- E_S)_x = 0 for the lowest 
eigenvalue using different sets of excited states in order to see if a useful separation 
of the total energy can be obtained. 

The energies are quoted in Table 1 relative to that of the normalized anti- 
symmetrized ground state function sJ~p o = Ilsa lsbl so that the values obtained 
from the variational calculation might be directly compared with second and 
higher order energies in a perturbation expansion. Two types of variational 
calculations, A and B, were carried out: in A all states were taken to be anti- 
symmetrized products of atomic orbitals d ~ t ;  in B only the ground state was 
antisymmetrized, the excited states being simple products of atomic orbitals. 
A further possibility would be to allow all states to be unantisymmetrized, but 
in this case there is no reason why the lowest energy may not be below that of the 
true antisymmetrized ground state as it can take on the spatial characteristics 
of the singlet spin ground state. For  example with only one excited state ls~ 2p~ b 
the lowest energy at 5 a.u. is - 1.000350 whereas an accurate function of Kolos 
29* 
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T a b l e  1 

Sta tes  H y d r o g e n i c  A H y d r o g e n i c  B L 6 w d i n - S h u l l  A L 6 w d i n - S h u l l  B 

R = 4  R = 5  R = 6  R = 4  R = 5  R = 6  R = 4  R = 5  R = 6  R = 4  R = 5  R = 6  

I + D + C + C '  - 9 1 . 7  - 1 7 . 1  - 4 . 3  - 7 3 . 6  - 1 5 . 6  - 3 . 9  - 1 5 4 . 7  - 3 5 . 5  - 1 0 . 2  - 1 8 0 . 7  - 3 8 . 5  - 1 0 . 8  

I + D + C  - 8 7 . 5  - 1 5 . 1  - 3 . 6  - 7 3 . 2  - 1 5 . 0  - 3 . 7  - 1 5 3 . 6  - 3 4 . 8  - 9.9 - 1 8 0 . 4  - 3 7 . 3  - 1 0 . 1  
I+D - 6 9 . 0  - 1 2 . 8  - 3 . 4  - 6 1 . 4  - 1 0 . 9  - 2 . 7  - 81.5 - 2 1 . 0  - 7.5 - 78.2 - 2 0 . 1  - 7.3 
I + C  - 8 1 . 6  - 1 1 . 6  - 1 . 6  - 5 3 . 9  - 9.1 - 1 . 5  - 1 1 8 . 3  - 1 9 . 4  - 3.1 - 1 0 7 . 4  - 1 7 . 5  - 2.8 
D+C - 4 5 . 1  - 1 0 . 5  - 3 . 3  - 5 6 . 0  - 1 2 . 9  - 3 . 5  - 1 5 0 . 5  - 3 4 . 4  - 9.9 - 1 7 4 . 2  - 3 6 . 7  - 1 0 . 1  
I - 5 2 . 1  - 6.1 - 0 . 6  - 4 2 . 8  - 5.2 - 0 . 5  - 11.0 - 0.8 - 0.1 - 9.9 - 0.8 - 0.1 
D - 3 2 . 9  - 7.5 - 2 . 2  - 1 7 . 9  - 5.6 - 2 . 2  - 70.7 - 1 9 . 9  - 7.5 - 68.9 - 1 9 . 4  - 7.3 
C - 4 0 . 0  - 7.3 - 1 . 3  - 3 7 . 2  - 7.0 - 1 . 2  - 1 1 6 . 1  - 1 9 . 1  - 3.1 - 1 0 1 . 1  - 1 6 . 9  - 2,7 

Second  o r d e r  energies  c a l c u l a t e d  va r i a t i ona l l y .  R is in a t o m i c  uni t s  a n d  energies  a re  in uni t s  of  

1 0 -  5 a.u.  T y p e  A c a l c u l a t i o n s  were  d o n e  u s i n g  all  s t a tes  a n t i s y m m e t r i z e d ,  B wi th  on ly  the  g r o u n d  s ta te  

a n t i s y m m e t r i z e d .  

T a b l e  2 

H y d r o g e n i c  L b w d i n - S h u l l  

R 4.0 5.0 6.0 4.0 5.0 6.0 

(I § D + C) A .70 .75 .87 .75 .84 .95 

(I) + (D) + (C) B .75 .84 .95 1.01 1.00 1.00 

(I + O) A .71 .94 1.21 1.00 1.01 .99 

(I) + (D) B 1.11 1.01 1.00 .99 1.00 .99 

(I + C) a .89 .87 .84 .93 .97 .97 

(I) + (C) B .67 .75 .88 .97 .99 1.00 

(C + D) A .62 .71 .94 .81 .88 .93 

(C) + (D) B 1.02 1.02 1.03 1.02 1.01 1.01 

Add i t i v i t y  r e l a t i onsh ip s  for  the  v a r i a t i o n a l  energies .  Cases  A a n d  B a re  as  in T a b l e  1. 

and Wolniewiez [10] has an energy of only - .9986849. It is true that if only the 
ground state is antisymmetrized there is no method of ensuring that the lowest 
energy state is spatially antisymmetric but for rather weak interactions this would 
hardly seem to be a problem. 

We also give in Table 3 a total second and higher order energy, which we 
define as the exact energy (assumed to be that of Ref. 10) minus the zero and first 
order energies. 

In Table 2 we make a comparison of  the additivity of the different sets of 
results. For  instance (I + D + C)/[(/) + (D) + (C)] is the energy (given in Table 1) 
calculated from a set of G, I, D and C divided by the sum of the energies calculated 
from G and I, G and D, and G and C. 

The perturbation results are calculated from the formulae in Ref. 4. If the 
zero order Hamil tonian and wave function are taken to be those of the system 
at infinite separation then the second-order energies are 

= Z U o/( o -E,) 
t r  
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and 

E ~2= Y Uto(U;o- Uoo S~o- UzoS'oo)/(Eo- ~), 
t r  

the latter being the exchange term. The first-order energy is the energy of the 
antisymmetrized product relative to the energy at infinite separation, i.e. 

E l o _  Uoo-  U•o 
1 -S~0  

These formulae apply only for a basis of locally excited states. For  the charge 
transfer states we used the well known formula 

E 2 = Y ,  (Uzo - Uoo  S , o ) V ( ~ o  - 6,) 
t ~ o  

which is formally of exchange type. 

T a b l e  3 

S ta t e s  H y d r o g e n i c  L S w d i n - S h u l l  

R = 4  R = 5  R = 6  R = 4  R = 5  R = 6  

11 - 1 0 . 3  - 1 . 2  - 0 . 1  - 1 0 . 6  - 0.6 0.0 

D t - 6.3 - 3.3 - 1.8 - 37.7 - 16.8 - 7.3 

12 + 26.9 + 3.6 + 0.3 + 17.5 + 1.1 + 0.1 

D 2 - 3.8 - 0.8 - 0.1 - 10.0 - 1.4 0.0 

C - 11.2 - 1.5 - 0.2 - 46.9 - 27.6 - 0.9 

E I + 879.0 + 192.2 + 39.2 + 879.0 + 192.2 + 39.2 

E" - 2 1 6 . 8  - 60.7 - -20 .4  - -216 .8  - 60.7 - 2 0 . 4  

E n e r g i e s  c a l c u l a t e d  f r o m  p e r t u r b a t i o n  theory .  U n i t s  a re  as i n  T a b l e  1. T h e  s u b s c r i p t  1 i n d i c a t e s  

t he  n o n - e x c h a n g e  t e r m s  a n d  2 the  e x c h a n g e  te rms .  E 1 is the  f i rs t  o r d e r  e n e r g y  a n d  E n = Eexa~ t - E 1 - E ~ 

is the  t o t a l  s e c o n d  a n d  h i g h e r  o r d e r  energies .  

Although these formulae apply only when the excited states are eigenfunctions 
of the H o we have used them for the L6wdin-Shull set of orbitals with the modifi- 
cation that E t is defined as the expectation value of the H o for the state t. The results 
are given in Table 3. 

All integrals were computed using the Miller-Brown program [11] and the 
energies obtained by diagonalization of the matrix L- 1H(L- 1), with L defined 
by L L  t = S, using standard routines. 

Discussion of Results 

We first note from Table 3 that the total second and higher order energies E n 
contribute only about 20 % to the total interaction energy (E' + E n) at 4 a.u. and 35 % 
at R = 6 a.u. This result which has been noted before [12] shows that even at 
fairly large separations the first order energy can not be neglected as it is in the 
long-range Eisenshitz-London theory. 
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From the results shown in Tables 1 3 the following points emerge. 
1. By comparing the first and second rows of Table I it is seen that the states C' 

are of little importance. 
2. If a small basis set is used for this type of calculations and the primary 

object is the best possible total energy then it is better to use L6wdin-Shull orbitals 
than hydrogenic ones. This is to be expected. 

3. In the long range limit the order of importance is known to be dispersion 
>> induction > charge transfer. Donath  and Pitzer [12], who have made calcula- 
tions for R = 6 and above, have noted that even at quite long internuclear distances 
electron correlation effects (introduced by mixing in charge transfer terms) play 
a significant role. Our  results quite clearly confirm that the long-range order does 
not hold at the relatively short distances we are studying. At some distance below 
the van der Waal's radius (which for this state is ~ 8 a.u.) the induction and charge- 
transfer energies become larger than the dispersion energy for our small basis set. 
We do not  of course know if this is true for the complete set. 

4. As mentioned earlier one of the main problems in the theory of inter- 
molecular forces is the influence of charge transfer states. If a perturbation theory 
of exchange forces is based on the complete set of locally excited states then a 
rigorous separation of the total energy can be obtained. If charge transfer states 
are added to the set it becomes overcomplete and moreover these states are not 
eigenfunctions of the unperturbed Hamiltonian. In whatever way one chooses to 
calculate charge transfer energies they will not be expected to be additive to the 
dispersion or induction energies. This non-additivity is shown for the variational 
calculations in Table 2. It is seen however that the charge transfer energy is 
neither more nor less additive than the inductive and dispersion energies at these 
distances. In general additivity is improved as R increases, but clearly in certain 
cases the expected convergence to unity occurs at longer distances than we have 
studied. One further general point is that additivity is better in type B calculations 
than in A, suggesting that deviations from additivity are due mainly to the inter- 
action between different excited states rather than between the excited state and 
the ground state. 

The results show that if one is using a small basis set charge transfer states 
make an important contribution to the total energy yet there will be no single 
perturbation formula which allows one to add a charge-transfer energy to inductive 
and dispersion energies. 

5. We turn now to the perturbation results shown in Table 3. The most 
obvious characteristics are (a) the overall smallness compared to the variational 
results and to the exact higher order energy and (b) the relatively large size of 
some of the exchange contributions. 

The overall smallness compared with the exact higher order energies is 
expected and is fully consistent with known results. As early as 1930 Eisenshitz 
and London [13] calculated that 40 % of the dispersion energy in H 2 comes from 
the continuum and it is generally accepted that the series for E 2~ is only very 
slowly convergent for an expansion in terms of eigenfunctions. The results are 
rather better for the L6wdin-Shull expansion set. The second order exchange 
terms (E 22) have received little attention, although Alexander and Salem [14] 
have calculated "generalized" exchange and dispersion energies for the inter- 
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action of  two hydrogen  a toms and their results are no t  inconsistent with ours. 
Little is known  about  the behaviour  of  the second order  exchange terms. Al though 
Musher  and Amos  [15] claim that  the main  contr ibut ion to these energies comes 
f rom the con t inuum;  this is no t  supported by our  results. The large size of  these 
exchange terms is no t  unexpected at these distances as the overlap between the 
is orbital of one a tom and the 2s and 2p orbitals of  the other  are quite large 
(see Table 4). 

Table 4 

Hydrogenic L6wdin-Shull 

R=4 R=5 R=6 R=4 R=5 R=6 

Slsolsb .1893 .0966 .0471 .1893 .0966 .0471 
$1~2~ -.2814 -.2702 -.2352 -.2820 -.1945 -.1202 
Slsozp~ b .4776 .4157 .3377 .3785 .2414 .1413 

Overlap integrals for certain of the orbitals used in this paper. 

It  is perhaps  surprising that  a l though the small basis set is clearly insufficient 
to give reasonable values of  the per turbat ion energies nevertheless it gives a fairly 
good  result when used in the variat ion calculation. The reason is that  when the 
basis is far f rom complete  and non-or thogonal ,  the omission of  certain terms from 
the basis is compensa ted  by an increase in the effect of  other  states. However ,  in 
per turbat ion  theory  taken to second order  each excited state contributes in- 
dependently to the total  energy and the omission of certain states from the set 
cannot  be compensated  for. 

Condu~on 

The conclusions from this work  are that  for distances just  short  of  the van der 
Waals  min imum per turbat ion  calculations using a small basis set of  eigen- 
functions of  the separated system will no t  give satisfactory higher order  energies. 
We have not  been able in this s tudy to say if this conclusion extends to distances 
larger than the van der Waals  radii but  we suspect that  it does. A small basis of  
eigenfunction m a y  be useful for a variat ional  calculation, but, better results are 
likely to be obtained using a carefully chosen basis which are not  eigenfunctions. 
This approach  is now being studied. 
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